Super-resolution with Nonlocal Regularized Sparse Representation

نویسندگان

  • Weisheng Dong
  • Guangming Shi
  • Lei Zhang
  • Xiaolin Wu
چکیده

The reconstruction of a high resolution (HR) image from its low resolution (LR) counterpart is a challenging problem. The recently developed sparse representation (SR) techniques provide new solutions to this inverse problem by introducing the l1-norm sparsity prior into the super-resolution reconstruction process. In this paper, we present a new SR based image super-resolution by optimizing the objective function under an adaptive sparse domain and with the nonlocal regularization of the HR images. The adaptive sparse domain is estimated by applying principal component analysis to the grouped nonlocal similar image patches. The proposed objective function with nonlocal regularization can be efficiently solved by an iterative shrinkage algorithm. The experiments on natural images show that the proposed method can reconstruct HR images with sharp edges from degraded LR images.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Super-Resolution Reconstruction Based On L1/2 Sparsity

Based on image sparse representation in the shearlet domain, we proposed a 2 1 L sparsity regularized unconvex variation model for image super-resolution. The 2 1 L regularizer term constrains the underlying image to have a sparse representation in shearlet domain. The fidelity term restricts the consistency with the measured imaged in terms of the data degradation model. Then, the variable spl...

متن کامل

Image super-resolution using sparse coding over redundant dictionary based on effective image representations

Recent years have shown a growing research interest in the sparse-representation of signals. Signals are described through sparse linear combinations of signal-atoms over a redundant-dictionary. Therefore, we propose a novel super-resolution framework using an overcomplete-dictionary based on effective imagerepresentations such as edges, contours and high-order structures. This scheme recovers ...

متن کامل

Noise robust position-patch based face super-resolution via Tikhonov regularized neighbor representation

In human-machine interaction, human face is one of the core factors. However, due to the limitations of imaging conditions and low-cost imaging sensors, the captured faces are often low-resolution (LR). This will seriously degrade the performance of face detection, expression analysis, and face recognition, which are the basic problems in human-machine interaction applications. Face super-resol...

متن کامل

A Sparse Representation Based Super-resolution Image Reconstruction Scheme Utilizing Dual Dictionaries

Super-resolution (SR) image reconstruction is a technique to generate a high resolution (HR) image from several low resolution (LR) images of the same scene, which can improve the visual effect of images or serve as a pre-processing technique. Among various SR image reconstruction schemes, sparse representation based SR image reconstruction schemes have become the current research focus because...

متن کامل

Hyperspectral Imagery Super-Resolution by Spatial–Spectral Joint Nonlocal Similarity

Hyperspectral (HS) super-resolution reconstruction is an ill-posed inversion problem, for which the solution from reconstruction constraint is not unique. To address this, an HS image super-resolution method is proposed to first utilize the joint regulation of spatial and spectral nonlocal similarities. We then fused the HS and panchromatic images with sparse regulation. With these two regulati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010